

Rhine and Tisza Basins Insights from the NeWater Project

Claudia Pahl-Wostl Professor for Resources Management University of Osnabrück, Germany

NeWater

New approaches to adaptive water management under uncertainty

Transdisciplinary Research Project: FP6 EU

January 2005 – February 2009 Funded with 12 Mio Euro from the EU 35 project partners

www.newater.info

NeWater Case Studies

Rhine basin WFD coordination areas

A1B (2071/2100 - 1961/1990) Sommer: relative Niederschlagsaenderung [\$]

A1B (2071/2100 - 1961/1990) Winter: relative Niederschlagsgenderung [%]

Figure 12: Changes in precipitation [%] in summer (left) and winter (right) for the years 2071-2100 compared to the reference period 1961-1990 (REMO 10 km x 10 km, A1B)

A few figures.....

Variable	Rhine	Tisza	
Water System			
Size Catchment Area [km ²]	185000 (D 58%, NL 12%)	~ 150.000 (H 29%, Uk 8%)	
Length river [km]	1320	~1000	
Population [p per km ²] Av, min - max	270 264-5000	92 78-102	
GDP per capita (PPP corrected)	\$34 200 (D) \$38 500 (NL)	\$6,900 (Uk) \$19,000 (H)	
HDI (Human development index)	0,935 (D) 0,953 (NL)	0,788 (Uk) 0,874 (H)	
CPI (Corruption perception index)	7.9 (D) 8.9 (NL)	2.5 (Uk) 5.1 (H)	

- Highly regulated rivers history of floods
- Catastrophes trigger change
 - major flooding events
 - <u>pollutions accident</u> (Rhine 1986 Schweizerhalle, Tisza 2000 Cyanide Spill)
- Paradigm shift in water management promoted

Hungarian Tisza River Floodplain

NeWater Pre- and Post- Engineering under original Vasarhelyi Plan (1870)

Tisza's length was lowered by more than 400 kilometers Floodplain area was lowered from 38500 km² to 1800 km² (whole basin)

From Flood Control to Adaptive and Integrated Floodmanagement

Claims for paradigm shift in the Hungarian Tisza and the Dutch Rhine

Change of management paradigm

Currently dominating	New approach		
"Controlling water"	"Living with water"		
Risiks are quantified and optimal technical solutions are implemented	Participatory risk evaluation and negotiation about integrated solutions		
Large-scale technical infrastructure (reservoirs, dams)	Multi-functional landscape with flooding areas combining ecosystem services and technology		

"Win-Win" situation – improve environmental conditions and profit from ecosystem services

Integrated human-environment systems are less vulnerable to climate change

Climate adaptation as an opportunity: Innovations

H

THE REPORT OF THE REPORT OF

=

Attempts for restoration ...

... competition for space

NeWater

Claudia Pahl-Wostl, GCI, Expert Gi

Which insights can be transferred regarding characteristics of and transitions towards more integrated and adaptive governance and management regimes?

Twin2Go

Coordinating **Twin**ning partnerships towards more adaptive **Governance** in river basins

A diagnostic approach

No panaceas but context sensitive solutions (processes, instruments....) to improve the performance of water governance and management

Analyse how certain characteristics of a water governance regime influence its performance given a certain context in which the regime is embedded

Basel – Schweizerhalle, Nov 1986

Socio-Economic Decline

County in the HTRB	Contribution of agriculture to CDP in the	Percentage unemployed	No. of cars/100 habitants	Migration from the region(%)
Ratio County / National	coun 4.8	1.7	0.6	1.5
National Average	3.7	7.2*	23	1.4
Szabolcs Szatmár	15.30	15.40	13.60	2.27
Hajdu Bihar	11.60	13.20	12.40	1.90
Bács-Kiskun	21.30	6.50	19.20	1.85
Békés	23.40	12.70	11.90	2.10

source: MoEW 2005 p.21

- What are essential elements needed to understand the <u>complex dynamics of water governance and management</u> <u>regimes</u> and their ability to cope with future challenges such as climate change?
- How can one analyse and assess the <u>adaptive capacity</u> of water systems and the role of management strategies for its enhancement?
- What determines the dynamics of <u>transitions to adaptive</u> <u>management</u>, what are barriers and what are drivers?

Objectives Twin2Go

- elaborate a <u>diagnostic approach</u>
- draw appropriate <u>context-sensitive</u> approaches for improving adaptive water resources management
- formulate <u>best practices and tools</u> for implementing adaptive water governance and for improving the up-take of research results
- disseminate consolidated results to policy at multiple levels