

Global Scale Initiative

Progress over the Last 2 Years

Briefing to the SSC

by

Charles J. Vörösmarty

10 December 2010, Bonn

Programme Implementation The GWSP Initiatives

Climate char Governance Adaptation Strategies

SPECIAL INTERES

Global Scale Initiative:
 Ranking of threats to the GWS, States

and Trajectories of Change

- 2. Global Catchment Initiative:
 - Bringing the global perspective to river basin research & management
- 3. Global Water Needs: Humans and nature Balancing goals and needs

Simulation modelling & scenarios bservations & Indicate

Policy Outreach & Capacity Building

METHODS & TOOLS

Rationale for Global Scale

- Centrality of water in the Earth system and in Global Environmental Change
- Tradition of local-scale perspectives have "bound" water studies in the past
- Major uncertainties in both biogeophysical quantities and governance possibilities @ global scale....yet to be explored
- We have the capabilities and opportunity to address the issue head-on
- The "G" in GWSP

Some Key Outputs

GTN-H Promides Rich Soad Information e.g. Hydrste artist for Marin Marin

Some Chief Findings

Delta	No. Maps	Est. Area km² <2m ASL	Recent Area km	Recent Area km River Flood	Recent Area km	
Amazon, Brazil	6	1960*	0; LP	0	9340	
Amur, Russia	-	1250	0; LP	0	0	
Brahmani, India	6	640	1100	3380	1580	
Chao Phraya, Thai.	2	1780	800	4000	1600	
Colorado, Mexico	3	700	0; MP	0	0	
Congo ⁵ DRC	-	460	0; LP	0	0	
	-					

Confirms:

No

Yes

Yes

Yes

Yes

Yes

Yes

100

30

- Numerous deltas sinking
- Chief cause: landward activities, not SLR, confirming Ericson et al. (2006)

Major

Major

Major

Minor

Major Major

Minor

Minor

0.5-2

50-150

0.2

1.4

 100's of millions at potential risk

Syvitski et al., Nature Geosciences, in review potential risk

Global Reservoir and Dam (GRanD) Database

Currently ~ 7000 dam locations referenced to SWBD polygons and HydroSHEDS river network

~ 2600 reservoirs ≥ 100 Mio. m³ Total storage capacity ~ 6000 km³ (>80% of world total)

Nature: September 30 issue

- Addresses central tenet of GWSP (document; attribute; impacts)
- Great media
 coverage (>240 outlets)
- Next steps: scenarios

Visit: www.riverthreat.net

CALCULATION OF KEY WATER INDICATORS

DIA_Π = domestic, industrial, agricultural water use (km³ yr⁻¹) in cell *n*

 $\sum DIA_n = DIA$ in cell n plus all upstream cells (km³ yr⁻¹) = $\sum_{i=1}^{n} DIA_i$ R_n = locally-generated runoff (mm/yr)

 $A_n = \text{area of cell } n \text{ (km}^2\text{)}$

 $Q_{Ln} = 10^6 * R_n * A_n = locally generated discharge (km³ yr⁻¹)$

 $Q_{Cn} = \sum_{i=1}^{N} Q_{L_i} = \text{river corridor discharge (km}^3 \text{ yr}^{-1})$

 $DIA_n/Q_{Cn} = local relative water use (unitless)$

 $\sum DIA_n/Q_{Cn} =$ water reuse index (unitless)

n = position of cell in river network

 total number of upstream cells plus cell in question

Key (cell n)

Global RIMS

Global Rapid Indicator Mapping System for Water Cycle & Water Resource Assessment

- DEFINE WATERSHED STATE BASED ON LOCAL AND RECURSIVE INDICES
- GOOGLE AND OPEN MAP SERVERS
- MAP SYSTEM STATES OVER MULTI-SPACE & TIME SCALES

Large \$\$ & Energy Costs

- Treat symptoms rather than causes
- Strand poor & BD under high levels of threat
- Water management impacts (like from dams) impair BD and Ecosystem Services

Infrastructure investments are huge: \$0.75Trillion/yr for OECD & BRIC alone by 2015

Why so different?

Next Steps

- Continue WWAP liaison / support activities—"State Product" (Pilot Study on Indicators), National Water Accounts (UN Statistical Division)
- Continue GTN-H coordination w/ WMO
- Continue IGBP-LOICZ effort on deltas, focusing on sources of risk from freshwater management
- Continue GWSP-DIVERSITAS Threat Mapping, engage IPBES
- Workshops on all of these
- "Bundled" products for Atlas

GSI: Next Steps A Focus on Partnerships

- GAIM for integrated modeling
 - US NSF: EASM, WSC, Coupled Human-Natural Systems
- ESSP Carbon Project for (a) E use to pump H2O; (b) water – climate; (c) water – carbon – energy links
- GTN-H / WWAP
- Use of the Atlas/RIMS (www.riverthreat.net) to bring partnerships together
- Private sector?