

Citizen Science as an Enabler for Integration and Implementation

Dr Sabine Stuart-Hill

Centre for Water Resources Research (CWRR)

Stuart-Hills@ukzn.ac.za

033 260 5460

With contributions from Ntombiyenkosi Nxumalo (NRF Intern) and partially funded by the WRC of South Africa

INSPIRING GREATNESS

Points of Departure

- WEF Nexus presents itself differently on different scales.
- Sustainable living and well-being needs a localised view,
- and thus, context specific governance.
- Water, energy and food security represent basic needs of well-being and empowerment.
- In Southern Africa water quality is overtaking water quantity as the main threat to water availability.

The SDGs: A New Agenda for Sustainable Development

- A people centric vision, including aims such as dignitiy, prosperity and well-being on the backdrop of environmental protection and respectful use thereof.
- Such sustainable living and well-being needs a localised view, and thus, context specific governance.

Energy, food and water security are basic elements for **livelihoods**,

BUT well-being goes beyond this and requires a localies view to **capture local phenomena and context**.

Definition of terms

 WATER MANAGEMENT:
"Management refers to activities of analyzing and monitoring, developing and implementing measures to keep the state of a water resource within desirable bounds."
(Pahl-Wostl et al., 2012, 25)

WELL-BEING: "[...] it puts emphasis on relational and collective processes [...] and reflects the importance of social, psychological, and cultural needs required to thrive" (Armitage *et al.*, 2012) VULNERABILITY: A state of an individual, community, sector or organisation based on its exposure, sensitivity and coping capacity to climate change impacts. Consequently, vulnerability is "determined by social entitlements" (Adger, 2001, 925) and the property of 'adaptive capacity' as a responsive element can mitigate impacts and therefore reduce vulnerability to a certain extent (lonescu et al., 2005).

FLUENCING FACTO

R

The disadvantaged and often poor Southern African citizen

Disadvantaged, poor and informal settlements in urban and rural areas seem to to display very similar attributes of limited social-ecological well-being:

- Often limited access to water and sanitation
- Risks and vulnerabilities of subsistence and emerging agriculture
- Social capital is often disrupted
- Human health in urban areas is more exposed to threats of pollution and diseases
- Access to decision-making in urban settings and influencing thereof seems to be in closer proximity, but may not be anymore accessible, especially to women

How gain insight into such localised context? The Baynespruit subcatchment as a case study

Sensitivity and Capacity based on the

South African Population Census from 2011

	Spring We Dam Lions Hewiek	Albert Falls Dam	A CONTRACTOR					
	20 15 PMB area Duzi River and Tributary E. coli n ample Sample Site description	monitoring 15/09/2015	All results as E. coli 22/09/2015		o6/10/2015	13/10/2015	20/10/2015	27/10/2015
	Point MD006 uMsunduzi at Caluza Bridge	4884	6050	2613	4884	14136	3255	3654
	MD007 uMsunduzi at Caluza Bridge	3076	3280	2909	2602	2359	3255	2382
	MD008 uMsunduzi at Edendale Weir	2755	6830	1722	14136	1259	1935	24196
RM	SL003 Slangspruit above Duzi confluence MD011 Duzi at Camps Drift Bridge	6867 318	8840 6867	7270 443	16740 576	6990 148	7630	4040 1616
RM	MD013 uMsunduzi above Dorpspruit confl	464	4106	161	457	717	452	605
RD	DS003 Dorpspruit just above Townbush stream	748	10462	2187	2430	19863	2430	9870
RD	DS004 Townbush Stream just above Dorpspruit	17329	13330	8664	3840	738	1130	3255
	DS005 Dorpspruit Ohrtmann Road / just above Duzi confluence	12670	9900	14210	15000	10460	6090	13540
	MD014 uMsunduzi above Refuse Dump	3873	6867	6867	10462	4611	1850	3448
	MD015 uMsunduzi above Darvill WWW	3448	7270	3873	4352	2098	2489	2489
RM	MD016 uMsunduzi U/S Baynespruit	4106	9330	2282	3873	2098	3441	2720
	BS001 Baynespruit at Greytown Road	9330	7120	7430	14390	9060	5650	8300
	BS002 Baynespruit behind Epol	9330	4100	410600	22800	34480	6240	12960
RB	BS003 Baynespruit at Sobantu	980400	770100	235900	307600	105000	222400	275500
	MD017 uMsunduzi U/S Darvill mat river	2980	29090	27550	4810	4040	4106	6130
	DV020 Darvill Final Effluent normal discharge site	100	26020	265	11	17	17	318
	MD018 uMsunduzi D/S Darvill mat river		12460		1970		<u>+'</u>	
RM	MD019 uMsunduzi at Motorcross weir	7940	43520	24890	840	2430	5172	6630
							VC	WRR

Crops irrigated with water from the river

River used for washing clothes

So how capture, i.e. understand and monitor, such local dependencies, linkages and impacts?

Citizen Science Complementing Conventional Monitoring

- Is community-based science, which basically denotes a partnership between scientists and non-scientists (communities) where data is gathered, shared and interpreted.
- Because of continuous observations, citizens have a better understanding of their own surrounding environment.
- Ensures that realistic frameworks or strategies are developed and implemented.
- Citizen monitoring is financially efficient, i.e. monitoring conducted during non-office hours and potential to infill monitoring gaps.
- Enables building a platform for collaborative water governance and improved social capital.

Mini SASS and Eco-Schools

SASS = South African Scoring System - is suitable for the assessment of river water quality and river health.

Rational: drivers, processes, habitat effects = biological response

Very time intensive assessments, 2 yrs at least; legal review cycles of 5 – 10 yrs

Photo by Liz Taylor

Community Assessment

Fair (intermediate)

Good (sensitive taxa)

Poor (tolerant taxa)

SITE INFORMATION TABLE			S
Date (dd/mm/yr):			1.
Collectors name:			
River name:			
Site description:			2.
GPS co-ordinate:	S	E	3.
Comments / notes			

Co-ordinates as lat/long (e.g. 29°30'25" S / 30°45'10" E) OR as decimal degrees (e.g. 29.50694°S/30.75277°E)

CITY OF SAPE TOWN | ISINEND SASENAPS | STAB KAAPSTAD

THIS CITY WORKS FOR YOU

RESEARCH COMMISSION

corina

- On the table below, circle the sensitivity scores of the identified insects.
- Add up all of the sensitivity scores.
- Divide the total of the sensitivity score by the number of groups identified.
- The result is the average score. which can be interpreted below.

GROUPS	SENSITIVITY SCORE
Flat worms	3
Worms	2
Leeches	2
Crabs or shrimps	6
Stoneflies	17
Minnow mayflies	5
Other mayflies	11
Damselflies	4
Dragonflies	6
Bugs or beetles	5
Caddisflies (cased & uncased)	9
True flies	2
Snails	4
TOTAL SCORE	
NUMBER OF GROUPS	
AVERAGE SCORE	
Average Score = Total Score ÷ Number	of groups

Interpretation of the miniSASS score: Although an ideal sample site has rocky, sandy, and vegetation habitats, not all habitats are always present at a site. If your river does not have rocky habitats use the sandy type category above to interpret your scores.

Feelenied estates (Condition)	River category		
Ecological category (Condition)	Sandy Type	Rocky Type	
Unmodified (NATURAL condition)	> 6.9	> 7.9	
Largely natural/few modifications (GOOD condition)	5.8 to 6.9	6.8 to 7.9	
Moderately modified (FAIR condition)	4.9 to 5.8	6.1 to 6.8	
Largely modified (POOR condition)	4.3 to 4.9	5.1 to 6.1	
Seriously/critically modified (VERY POOR condition)	< 4.3	< 5.1	

MiniSASS

Flat worms

Flat worms are characterised by their flattened shape and soft bodied, worm-like form. They have an arrow-shaped head with two dorsal eyespots and are generally mottled or dark grey in colour. Flatworms move with a gliding action and are generally scavengers or carnivores

Leeches are segmented organisms that have very flexible bodies. When moving they expand to become long and thin, and then contract to become short and stubby. They have suckers on both ends of the body that are used for feeding and locomotion. Leeches are variable in colour, from grey, to red-brown and black. They swim with a fast, snaking movement and are found under stones, vegetation and debris.

Worms are long and segmented and have a cylindrical shape much like small earth worms. Their colouring is usually pink to brown. They are usually seen writhing around in debris digesting the substrate they fed on.

Snails are molluses with hard shells that vary in size shape and colour. Habitats vary, with some snails such as limpets clinging to rocks, whereas clams and muscles are found in sand. The more common snails move over stones and vegetation. Some snails are host to bilharzia, a serious health hazard for humans

Crabs and shrimps

Crabs and shrimp form part of the order Decopoda (ten legs) and have bodies and legs hardened to form a tough shell. They have four or five pairs of legs and eyes that are carried on stalks and are movable. Crabs are scavengers that feed mainly on leaf litter but will feed on animals when given the chance. Shrimps are mostly scavengers or deposit feeders.

tails and three pairs of legs each having two claws at the tip. A characteristic feature of stonefly nymphs are the tufts of gills on the side of the body as well as gills between the two tails. Wing pads on the thorax are often dark and obvious. Some species run across the substrate very efficiently and are potent predators on other invertebrates. Other species are smaller and feed on plant material. Most live in well oxygenated, clean

The aquatic larvae of adult caddisflies have a hard head with three pairs of legs which are attached to an elongated, soft body. Finger-like gills on the abdomen and anal appendages can be seen with the naked eye. Some caddisflies construct portable shelters/cases from sand grains, bits of vegetation and/or silk that are glued together to form a characteristic case shape. Most of the case-building types cannot swim whereas the case-le type swim freely across the substrate. Some feed on algae and detritus whereas others are predators

Buos can be defined as having a piercing and sucking beak for mouthparts, and two pairs of membranous wings. Beetles on the other hand have 'iaws' and outer wings that are hardened to protect the inner wings. Some bugs and beetles are well adapted to swimming, such as water boatmen, backswimmers, pond skaters and water striders. Most bugs and beetles are carnivorous, but some feed on algae

generally three broad tails/gills on the tip of the abdomen. Damselflies are carnivorous and have a 'mask' over the lower part of the face which hinges out to reveal a pair of pincers with which they catch their prey. They are often to be found in vegetation growing on the edge of rivers

Dragonflies are robust creatures that are

stout and have a large head and protruding eyes. Some have short legs whilst others have long legs. They do not

have tails, but swim using 'iet propulsion' by forcefully ejecting water from the abdomen. Dragonfly nymphs are usually the largest organisms found in a sample

and are the most powerful invertebrate

predators in the water.

Dragonflies

These mayflies have a narrow head and a small, slender, but not flattened body. They have leaf shaped gills on both sides of the abdomen and two but more commonly three tails, depending on the species

20x < 00 <<

Mayfly nymphs vary greatly in shape and size and live only for a day or two. In this time they will never feed and live to mate and lay eggs in the water. Mayflies fly close to rivers and lakes, usually swarming in the early evenings.

Mayflies

Minnow mayflies

Other mayflies are characterised by an elongated body, large head, welldeveloped mouthparts and stout legs. They live in a variety of habitats including burrowing in mud, crawling amongst decaying leaves, and scurrying over stones in fast flowing currents.

Most fly larvae have a fairly indistinct head but elaborate tail ends. They often

bristles/ spines and antennae. True flies

sand, mud and stones in fast flowing water. They can either be carnivorous or

segmented bodies and have the appearance of maggots. Some have

live in a variety of habitats including

have small, soft legs (prolegs),

filter feeders.

Clarity Tube

- A simplistic device to 'measure' the clarity, i.e. turbidity, of a grab sample.
- Initiative was motivated by community members in close proximity to a release pipe, that continuously felt sick as they used the insufficient treated effluents for domestic purposes.
- Monitoring is taking place twice daily and has been done so for the past 4 years.

Conclusion

- Need for mobile and continuous monit
- Jaches that
- southernedses rementing outling and it in the information of the spore antional at are complement of the end of the spore antional at citizen scient scient of the of the spore antional at Bottor. it the held ge is sign in the ables the c loca Citit where he spore antional at builds knows in the next the spore antional at the spore at the spo well-being in the Southerne OS Nencitive Cal well-being in the Southerne OS Nencitive Water quality monite in Crempton of the southerne of the
 - region have adjusted to catchmentinformal institutions as agents thus, offering an entry point for the inclusion of citizen science.

ate

cal

Innovations in government, management and governance beyond what we know...

Come and join us in having some great ideas!

Governance break-out group Wednesday, 10:30

Dr Sabine Stuart-Hill

Centre for Water Resources Research (CWRR)

Stuart-Hills@ukzn.ac.za

033 260 5460

