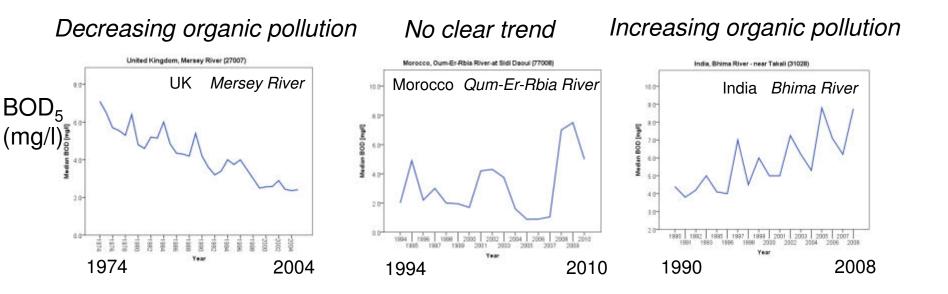


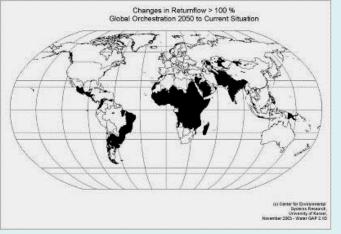

### The role of water quality in the nexus of food, energy and water




Joseph Alcamo Center for Environmental Systems Research, University of Kassel

> International Conference on Sustainability in Water-Energy-Food Nexus Bonn, 19-20 May 2014

### <u>Why protect water quality?</u> Different parts of the world, different trends


#### Different trends of organic pollution



Source: UN World Water Quality Assessment (Pre-Study)

### <u>Why protect water quality?</u> Water quality degradation in developing countries is speeding up

# Wastewater production at least doubling by 2050

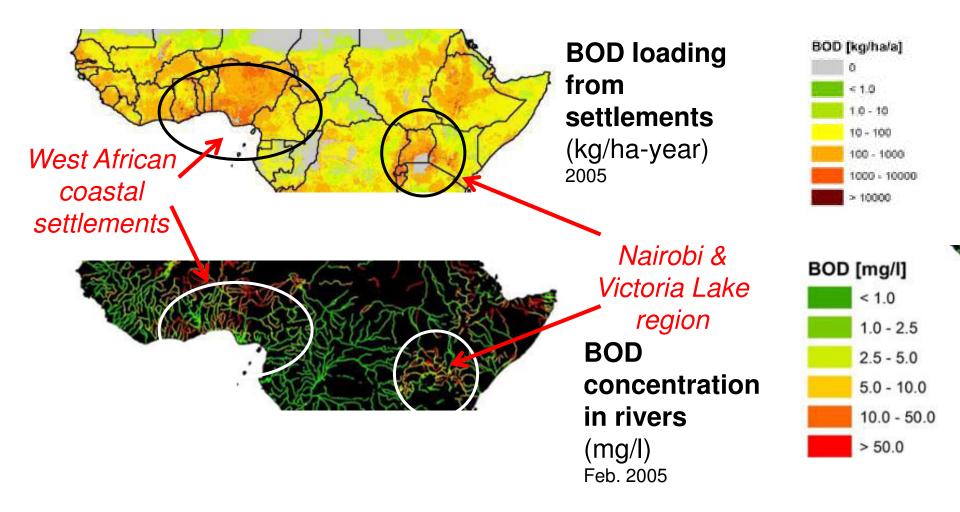


#### Sub-Saharan Africa: 3.6-5.5 x

Source: Millennium Ecosystem Assessment Scenarios



Sewerage connections increasing. But not wastewater treatment.


More untreated wastewater to rivers and lakes.

| Country    | % population<br>connected to<br>sewerage |      | % wastewater<br>treated |      |
|------------|------------------------------------------|------|-------------------------|------|
|            | 1990                                     | 2010 | 1990                    | 2010 |
| Kenya      | 6.7                                      | 7.4  | 4.9                     | 4.9  |
| Madagascar | 0.1                                      | 2.9  | 0                       | 0    |
| Somalia    |                                          | 11.1 | 0                       | 0    |

Sources: UNICEF & WHO Joint Monitoring Programme data base; Baum et al. 2013

#### Why protect water quality?

### Hot spot areas of organic pollution (preliminary)



Source: UN World Water Quality Assessment (Pre-Study)

#### Why protect water quality?

# Risks of water pollution – Health, food security, economy



#### Health:

Health risk of contaminated rivers & lakes  $\rightarrow$  contact with surface waters  $\rightarrow$  washing, cleaning, drinking

Africa: 768 million people without improved water supply (2011); Zimbabwe rural survey: ~ 43% use river (2003)

East Africa: 1/3 of people relying on surface waters suffer from intestinal sicknesses.



#### Economy:

*Gross Market Value:* Inland fisheries in tropics = \$US 6 billion/yr *Livelihood:* 58 M people worldwide in freshwater fishing industry *Food Security:* 

95% inland fishery production from developing world200 million Africans consume fish regularly



#### Nexus example #1.

# Energy & water quality: Energy costs of clean water



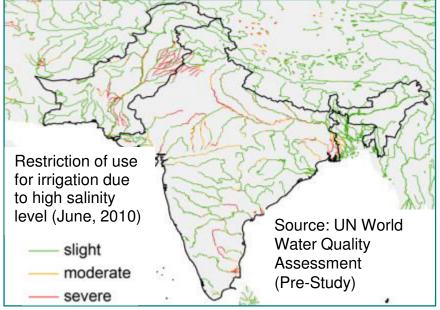
#### Energy costs are high

Water + wastewater in UK: 7703 GWh/yr  $\rightarrow$  Enough to power 2.3 M UK homes

Annual electricity requirements for wastewater treatment of city of 1 M in Africa  $\approx$  equivalent to annual electricity consumption of 40,000 people in Ghana

#### **Options for reducing energy costs:**

*demand side*: improve energy-efficiency in the treatment plant (biogas usage; pump & motor down-sizing); calibrate aeration, reduce wastewater production at source, ... *supply side*: solar-powered treatment facilities; constructed wetlands; ...


#### Wastewater as source of energy

e.g. Recover energy from wastewater flows  $\rightarrow$  biogas, biomass production, heat recovery ... e.g. potential to cover 7% of current South Africa total electricity supply (Stafford, 2013)

### <u>Nexus example #2</u> Food & water quality: The self-limiting cycle of producing food from irrigated farmland



food demand  $\rightarrow$  irrigated agriculture  $\rightarrow$  agricultural runoff  $\rightarrow$  downstream high salinity levels in rivers  $\rightarrow$  unsuitable for irrigation



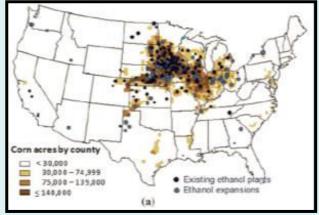
#### Stretches of river with restricted use for irrigation due to high salinity levels

| "Degree of<br>restriction on use" | India<br>[km] | India<br>[%] | Pakistan<br>[km] | Pakistan<br>[%] |
|-----------------------------------|---------------|--------------|------------------|-----------------|
| Slight to Moderate                | 7,863         | 16.6         | 1,679            | 8.7             |
| Severe                            | 6,208         | 13.1         | 4,401            | 22.8            |

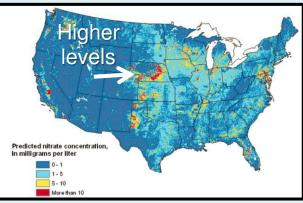
Source: UN World Water Quality Assessment (Pre-Study)

### <u>Nexus example #3</u> Energy & food & water quality: The case of biofuels and nitrate pollution

Biofuels & food: e.g. US ethanol expansion (2005 - 2011)  $\rightarrow$  increase food/feed corn prices  $\rightarrow$  cost to developing countries: + US\$6.6B (Tufts Univ.)

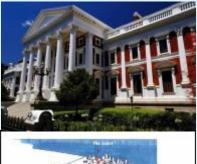

#### "The energy - water pollution - energy spiral"

Domestic energy demand/energy security  $\rightarrow$ increased ethanol production  $\rightarrow$  fertilizer use  $\rightarrow$ nitrate contamination of groundwater  $\rightarrow$  increased water treatment and **energy demand** 


USA Case Study:

- Ethanol production (2007-2022) ≈ +2/3
- Nutrient loading: + 10-37%
- Additional water treatment to remove nitrates from groundwater → 2,360 M kWh /year (Twomey et al., 2010).

Solutions: 2<sup>nd</sup> generation energy crops; more electricity & fewer liquids from bioenergy; integrated nutrient management;




Corn acreage by county (Twomey , 2010)



Nitrate concentration in groundwater (Nolan, 2006)

# So what to do? Scientific approaches to implementing the nexus









#### Governance – Science-Policy Interface

- National & regional governments: Joint cross-departmental working groups on energy-agriculture-water
- Expand portfolio of watershed authorities already concerned with water quality protection to include water-food-energy nexus
- Governments require full life-cycle studies of pollution control alternatives (e.g. energy costs of wastewater treatment)

# So what to do? Scientific approaches to implementing the nexus







#### <u>Research</u>

Launch advanced studies of renewable energy pathways: Which end-to-end renewable energy systems are most compatible with our goals for food, energy and water quantity & quality?

Launch advanced studies of sustainable agriculture:

Which scaled-up models of sustainable agriculture are most compatible with our goals for food, energy and water quantity & quality?

In connection with the Post-2015 Agenda & Sustainable Development Goals for Water:

What are the advantages/disadvantages of alternatives to conventional energy-intensive wastewater treatment? (e.g. constructed wetlands, grey water recycling, recycling wastewater for irrigation ...)

# Summing up



- Water pollution increasing in developing countries → health, food security, economy, …
- Water quality linked with food & energy, e.g.
  - $\rightarrow$  energy costs of wastewater treatment
  - $\rightarrow$  water quality constraints to irrigation,
  - $\rightarrow$  water pollution impacts of biofuels, ...
- Water quality at the heart of the food-energy-water nexus